Cross validation issues in multiobjective clustering
نویسندگان
چکیده
منابع مشابه
Customer Validation in Cross-Dock
Considering the importance of validation of customers in the cross-dock and since this is one of the problems of implementing cross-dock system in Iran, this study attempted to extract customer validation criteria. The purpose of the research is to eliminate the distrust of distributors in receiving the funds of the sent items and the statistical sample of this research is the experts of the sy...
متن کاملMultiobjective Hboa, Clustering, and Scalability Multiobjective Hboa, Clustering, and Scalability
This paper describes a scalable algorithm for solving multiobjective decomposable problems by combining the hierarchical Bayesian optimization algorithm (hBOA) with the nondominated sorting genetic algorithm (NSGA-II) and clustering in the objective space. It is first argued that for good scalability, clustering or some other form of niching in the objective space is necessary and the size of e...
متن کاملClustering Using Monte Carlo Cross-Validation
Finding the “right” number of clusters, Ic, for a data set is a difficult, and often ill-posed, problem. In a probabilistic clustering context, likelihood-ratios, penalized likelihoods, and Bayesian techniques are among the more popular techniques. In this paper a new cross-validated likelihood criterion is investigated for determining cluster structure. A practical clustering algorithm based o...
متن کاملEvolutionary Multiobjective Clustering
Clustering is a core problem in data-mining with innumerable applications spanning many fields. A key difficulty of effective clustering is that for unlabelled data a ‘good’ solution is a somewhat ill-defined concept, and hence a plethora of valid measures of cluster quality have been devised. Most clustering algorithms optimize just one such objective (often implicitly) and are thus limited in...
متن کاملA Multiagent, Multiobjective Clustering Algorithm
This chapter presents MACC, a multi ant colony and multiobjective clustering algorithm that can handle distributed data, a typical necessity in scenarios involving many agents. This approach is based on independent ant colonies, each one trying to optimize one particular feature objective. The multiobjective clustering process is performed by combining the results of all colonies. Experimental ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: British Journal of Mathematical and Statistical Psychology
سال: 2009
ISSN: 0007-1102
DOI: 10.1348/000711008x304385